
Coevolution of gene expression among
interacting proteins
Hunter B. Fraser*†, Aaron E. Hirsh‡, Dennis P. Wall§, and Michael B. Eisen*¶

*Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720; ‡Department of Biological Sciences, Stanford University, Stanford,
CA 94305; §Department of Systems Biology and the Computational Biology Initiative, Harvard Medical School, Boston, MA 02115; and ¶Department of
Genome Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 92720

Edited by Wen-Hsiung Li, University of Chicago, Chicago, IL, and approved May 4, 2004 (received for review April 13, 2004)

Physically interacting proteins or parts of proteins are expected to
evolve in a coordinated manner that preserves proper interactions.
Such coevolution at the amino acid-sequence level is well docu-
mented and has been used to predict interacting proteins, do-
mains, and amino acids. Interacting proteins are also often pre-
cisely coexpressed with one another, presumably to maintain
proper stoichiometry among interacting components. Here, we
show that the expression levels of physically interacting proteins
coevolve. We estimate average expression levels of genes from
four closely related fungi of the genus Saccharomyces using the
codon adaptation index and show that expression levels of inter-
acting proteins exhibit coordinated changes in these different
species. We find that this coevolution of expression is a more
powerful predictor of physical interaction than is coevolution of
amino acid sequence. These results demonstrate that gene expres-
sion levels can coevolve, adding another dimension to the study of
the coevolution of interacting proteins and underscoring the im-
portance of maintaining coexpression of interacting proteins over
evolutionary time. Our results also suggest that expression coevo-
lution can be used for computational prediction of protein–protein
interactions.

Coevolution is an evolutionary process in which a heritable
change in one entity establishes selective pressure for a

change in another entity. These entities can range from nucle-
otides to amino acids to proteins to entire organisms and perhaps
even ecosystems. A relatively simple and well studied example of
coevolution involves physically interacting proteins, in which
precise, complementary structural conformations of interacting
partners are usually needed to maintain a functional interaction.
If the conformation of one protein is interrupted by mutation, a
compensatory change may be selected for in its interacting
partner. When such compensatory changes occur, the two
proteins are said to coevolve.

Coevolution of interacting amino acids and proteins has been
studied intensively for more than a decade (see refs. 1–8). The
identification of coevolving pairs of genes is interesting and
important for several reasons. First, it can aid in functional
annotations: When an uncharacterized gene is found to coevolve
with several different genes, all of which encode proteins of a
single function, the unknown gene is likely to share that same
function. Second, identification of likely physical interactions
through detection of coevolution can contribute to our under-
standing of how proteins work together to execute their func-
tions. Third, coevolution may be a critical process by which
complex cellular components, such as multimolecule machines
and metabolic pathways, undergo adaptive or constructive
change without disruption of organismal integrity.

Various methods have been developed to detect coevolution
of proteins, most based on a common principle: Evolutionary
distances between all possible pairs of amino acid sites or
proteins are estimated from multiple alignments of protein
sequences, and the extent of coevolution for each pair is deter-
mined by measuring the correlation of their evolutionary rates
across different lineages. Such methods have been successful in

quantifying the extent of coevolution between proteins, protein
domains, and amino acid residues known to interact physically
(3–8). These methods also have been used to predict specific
interactions between receptors and their substrates in large
paralogous protein families (4, 8) and between proteins from the
bacterium Escherichia coli (6, 7).

In previous applications of this approach to the study of
protein coevolution, �11 sequences (and sometimes many more)
have been used in each multiple alignment (3–8). Whereas such
extensive taxonomic sampling is possible in studies of pro-
karyotes, for which �100 genome sequences are available, it
remains difficult in studies of eukaryotes.

Here, we examine whether coevolution can be detected not
only in protein sequences but also in their levels of expression.
The expectation that expression levels should coevolve stems in
part from the observation that the expression levels of genes
encoding interacting proteins are strongly correlated over dif-
ferent experimental conditions in Saccharomyces cerevisiae (9–
11). This observation is thought to reflect the requirement for
interacting proteins to be present in the cell in similar amounts
at the same time to properly form stoichiometric complexes and
execute their function. When protein complex subunits are
misexpressed, they tend to have more severe consequences on
growth than proteins that do not participate in stable protein
interactions (12). Thus, we predicted that natural selection
would maintain precise coexpression of interacting proteins; if
the expression of one gene changes, it would be expected to
result in a selection pressure for a similar expression change in
its interacting partners, analogous to the coevolution of amino
acid sequence described above.

In this study, we use the genome sequences of four closely
related yeasts (Saccharomyces cerevisiae, Saccharomyces para-
doxus, Saccharomyces mikatae, and Saccharomyces bayanus)
along with protein interaction data from S. cerevisiae to intro-
duce a method to detect coevolution of gene expression based on
coordinated changes in gene expression, as estimated by codon
usage bias. We also examine protein sequence coevolution to
evaluate whether sequence data from these four species alone
allow the coevolution of interacting proteins to be detected on
a genomic scale and to compare the strength of expression
coevolution with the strength of sequence coevolution.

Materials and Methods
Sequence Data. For all analyses described in this work, we used the
complete genome sequences of four closely related (�20 million
years divergence, corresponding to an average of 2.2 synonymous
substitutions per site after correcting for nonneutral synonymous
sites) yeast species in the genus Saccharomyces: S. cerevisiae (13),
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S. paradoxus, S. mikatae, and S. bayanus (14). Rigorous assign-
ments of orthology were made based on both high-sequence
identity and synteny between species (14), and alignments were
performed on protein sequences by using CLUSTALW (15).
Alignments were discarded if their maximum likelihood phylog-
eny (16) was not consistent with the known phylogeny of the
species, or if they contained either real or spurious (because of
sequencing errors) frameshift mutations because frameshifts
result in unrealistic estimates of evolutionary rates. Frameshifts
were detected by establishing a majority-rule consensus se-
quence from the four sequences; if any sequence failed to match
the consensus for at least five consecutive positions, it was
counted as having a frameshift and was discarded from the
alignment.

Detection of Sequence Coevolution. Our test for protein sequence
coevolution of interacting proteins is similar to methods that
search for strong correlations between pair-wise sequence dis-
tances or similarity of phylogenetic trees (3–8). For each set of
orthologous genes, we used PAML (16) to estimate the evolu-
tionary rate (nonsynonymous to synonymous substitution ratio)
in each branch of the yeast phylogenetic tree. Five branch lengths
were calculated for each set of orthologs (one for each species
plus one internal branch). These five lengths were normalized by
dividing each by the average length of that branch over all of the
trees calculated to control for the fact that some branches tended
to be longer than others. The normalized lengths could then be
plotted against each other for any pair of genes, and the Pearson
correlation coefficient (17) could be calculated as a measure of
the degree of coevolution. To calculate the significance of the
observed distribution of correlation coefficients among inter-
acting pairs, we compared it with the distribution of all possible
pairs, except for those in the list of interactors. The nonpara-
metric Kolmogorov–Smirnov (KS) test (17) was used to estimate
the probability that both were sampled from the same underlying
distribution.

Detection of Expression Coevolution. Our method for detecting
expression coevolution was quite similar to our method for
detecting sequence coevolution. Codon bias values, as repre-
sented by the codon adaptation index (CAI) (18), were calcu-
lated for each of the four orthologous sequences by using the
codon frequencies of the 20 most highly expressed genes in S.
cerevisiae, as estimated by Arava et al. (19). Results were not
affected by using species-specific codon usage tables (data not
shown). The four values for each gene then were plotted against
each other for each pair of genes, and the Pearson correlation
coefficient was calculated for each pair. Details of significance
testing by the KS test were as described above.

Protein–Protein Interaction Data. A list of 4,175 putative interac-
tions involving 1,360 S. cerevisiae proteins was taken from a study
by von Mering et al. (20). Only those interactions listed with
‘‘high confidence’’ (interactions found by multiple independent
methods) or listed as previously annotated (by non-high-
throughput methods) were used to minimize the effects of false
positives. High-throughput methods used to identify interactions
were yeast two-hybrid, MS, synthetic lethality, and synexpres-
sion; computational methods used were conserved gene neigh-
borhood, gene fusion, and phylogenetic profiling (20). Exclusion
of interactions whose membership in the high-confidence cate-
gory depended on synexpression (correlated expression levels in
S. cerevisiae microarray experiments), because of a possible
circularity when measuring CAI coevolution of these putatively
interacting proteins, did not appreciably affect the results. Any
interactions involving a protein with itself were discarded be-
cause these would indicate perfect coevolution for a trivial
reason.

Results
Coevolution of Protein Sequences. We began by examining metrics
of coevolution for proteins that have been observed to interact
in S. cerevisiae. From a set of 4,175 relatively high-confidence
protein–protein interactions involving 1,360 proteins (20), we
identified 1,377 interacting pairs involving 621 proteins in which
both proteins had clear orthologs in all four Saccharomyces
species and the alignments of the protein sequences were of high
quality. We used the multiple alignments to estimate rates of
evolution for each protein in each lineage. As a measure of their
coevolution, for all pairs of proteins we computed the correlation
coefficient between their rates of evolution in the different
lineages (see Materials and Methods). For comparison to the set
of interacting proteins, we generated a list of all 192,510 possible
pairs (involving the same 621 proteins) that were not in our list
of 1,377 interactions.

Because there was a wide range in the amount of variance in
evolutionary rates for different pairs of proteins (Fig. 1A), we
reasoned that pairs in which one or both proteins had very little
variance in evolutionary rates would not be very informative for
detecting coevolution because the small changes that are indi-
cated by a small variance are more likely to reflect random
fluctuations or noise instead of authentic changes in the evolu-
tionary rates of a gene along different lineages. For this reason,
we restricted our analysis to the 200 interacting pairs (of the
1,377 total) with the greatest variance in both proteins of the pair
(i.e., only the variance in the less variable of the two proteins was
used to represent the pair). This variance cutoff (Fig. 1 A, dashed
line) was then applied to the complete list of 192,510 random
pairs, resulting in a list of 26,796 pairs (200 known interactions
and 26,596 others) with a variance in evolutionary rates above
the cutoff for every protein in the list. In other words, a minimum
variance cutoff was applied to all 621 proteins, and all possible
pairs among those satisfying the cutoff were included for further
analysis.

If the amino acid sequences of our 200 interacting proteins
were coevolving, we would expect to see the distribution of
correlation coefficients (our metric of coevolution) to be greater
in the 200 interacting pairs than in the 26,596 noninteracting
pairs. To test this hypothesis, we separated the interacting and
noninteracting pairs into 10 bins each, separating protein pairs
by the strength of the correlation between their sets of evolu-
tionary rates. This analysis confirmed that we could observe such
coevolution at a genomic scale: For all bins of correlation
coefficients greater than or equal to the 0.4 � r � 0.5 bin, there
was a greater fraction of interacting protein pairs than random
pairs (Fig. 1B). These two distributions are significantly different
from one another, as measured by the KS test (P � 0.0069). This
difference also can be summarized by comparing the medians of
these two distributions; as expected from Fig. 1B, the median
correlation coefficient for interacting pairs (r � 0.088) was
higher than that of random pairs (r � �0.050).

Although these results establish that we can detect coevolution
of interacting protein sequences by using just four genome
sequences, they do not quantify the fraction of our interacting
proteins for which we have detected coevolution. Another way
to pose this same question is: For what fraction of our interacting
proteins do we find a correlation coefficient higher than that
expected for protein pairs that are not known to interact?
Because the distribution of correlation coefficients among non-
interacting pairs (Fig. 1B, dashed line) represents what is ex-
pected by chance, the value we seek is the difference between the
values that form this curve and those that form our distribution
of interaction correlation coefficients (Fig. 1B, solid line) at high
correlation coefficients (specifically, at all correlation coefficient
bins greater than the largest correlation coefficient at which the
distributions cross). In other words, we are simply subtracting an
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estimate of the fraction of false positives from the fraction of true
positives to find the number of true positives not explainable by
random chance. We calculated this value to be 0.113, indicating
that we detected coevolution in the sequences of �23 (11.3%) of
our 200 interacting pairs. Because this calculation assumes that
our list of interactions is free of false positives and that our
noninteractor list is free of false negatives, it should be inter-
preted as a lower bound for the amount of sequence coevolution
that we can detect with four genome sequences.

Coevolution of Gene Expression. Although our finding coevolution
for 11.3% of the interacting pairs is significant, it still represents
only a small fraction of the interactions in our list. Thus, we
wished to develop a method to extract more information about
protein interactions than we could from the coevolution of
protein sequence alone. Because it has been shown that genes
coding for physically interacting proteins tend to be coexpressed
(9–11), we reasoned that interacting proteins might have de-
tectable coevolution of expression levels if such coexpression
must be maintained even as expression patterns change over
evolutionary time.

One method to test whether expression levels coevolve would
be to use DNA microarrays to measure the expression levels in
various species and conditions and then to search for cases in
which expression patterns of mRNAs encoding a protein and its
interacting partner have changed in a coordinated fashion.
Although such experiments are feasible, they are labor-intensive
and expensive, and we can expect the generation of expression
data to lag behind genome sequencing for some time. Therefore,
we asked instead whether we could detect coevolution of gene
expression using sequence alone. Although we have no method
to accurately infer patterns of expression from sequence, there
does exist a very well characterized method to estimate a gene’s
average expression level from its sequence. Bias in the usage of
synonymous codons, which was first noted more than 20 years
ago (21), is a remarkably good predictor of average expression
level. The strong association between codon bias and expression
is thought to be because of selection for translational efficiency
and accuracy of highly expressed genes (22). (Because the
changes in gene-expression levels we are interested in occurred
over the last several million years of evolution in our four

Saccharomyces species, codon bias may reflect aspects of pre-
vious selection on gene expression that may not be apparent in
microarray expression data because microarray data are mea-
sured in laboratory conditions that are undoubtedly quite dif-
ferent from those of a natural yeast habitat. Also for this reason,
the strength of the correlation between codon bias values and
microarray expression data from the laboratory cannot be taken
as a precise indicator of how well codon bias reflects historical
expression levels.) Because codon bias can be calculated easily
for any gene sequence, we tested the hypothesis that genes
encoding interacting proteins tend to coevolve in expression and
thus indicate coordinated changes in codon bias in different
species. In other words, if codon bias for gene X is greater in
species A than in species B, then we might expect codon bias for
some or all genes whose protein products interact with the
protein encoded by X to be greater in species A than in species
B as well.

To test this hypothesis, we again began with our list of 1,377
interactions among 621 proteins. We used the codon usage from
the 20 most highly expressed genes in S. cerevisiae (19) to
parameterize the CAI (see Materials and Methods) for each
species and used the CAI to estimate expression levels for each
of the 621 genes in all four species. There was a wide range of
variances in CAI for the 192,510 pairs (Fig. 2A), so, for the same
reasons described above, we restricted our attention to the 200
interacting pairs with the highest variance in CAI for both
members. Application of this cutoff (Fig. 2 A, dashed line) to the
list of all possible pairs yielded 11,781 pairs (of which 200 were
known interactions and 11,581 were not).

Comparison of the distribution of correlation coefficients for
the 200 interacting pairs with the 11,581 noninteractors revealed
a striking difference, with the interacting pair distribution
sharply skewed toward high values (Fig. 2B, solid line). The
median correlation coefficient for interacting pairs was 0.822,
whereas that of noninteractors was only 0.1997. The KS test
confirmed that the difference between the two distributions was
quite significant (P � 10�26). Calculating the fraction of inter-
acting pairs for which we could detect expression coevolution (as
described above for protein sequence coevolution) resulted in a
value of 37.3%, or �75 of our 200 interacting pairs, which again
should be interpreted only as a lower bound. Thus, we were able

Fig. 1. Coevolution of sequence. (A) A histogram of the base 10 logarithms of variance in evolutionary rates for all 192,510 possible pairs of proteins in this
study. The variance for each protein in a pair was calculated, and the lower of the two was used to represent the pair. The dashed line indicates the variance
cutoff described in the main text. Note that evolutionary rates were normalized by the mean rate for each branch of the phylogenetic tree (see Materials and
Methods). (B) A histogram of the correlation coefficients indicating the strength of amino acid sequence coevolution for 200 pairs of interacting proteins (solid
line) and 26,596 pairs of noninteracting proteins (dashed line). The two distributions are significantly different from one another (KS test, P � 0.0069). Bin labels
are the upper bound for each bin (e.g., the label 0.9 indicates 0.8 � r � 0.9).
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to detect expression coevolution at a level above the random
background for more than one-third of the interacting protein
pairs.

Although our finding of strong correlations between expres-
sion levels of interacting proteins in different organisms is
consistent with our hypothesis of coevolution occurring by
sequential mutations, another possibility must also be consid-
ered. If the genes encoding interacting proteins are often
regulated by the same transacting factor, then a single change
affecting that factor could lead to up- or down-regulation of both
interacting proteins in one species. Even though this scenario
does lead to correlated changes in expression, it would not truly
be coevolution. To distinguish between the true coevolution
possibility and the single transacting mutation possibility, we
used experimental genome-wide transcription factor binding
data that are available for 113 transcription factors in yeast (23).
We reasoned that, if single mutations in transcription factors
account for some or all of our apparent expression coevolution,
then genes encoding pairs of interacting proteins that are
regulated by the same transcription factor should indicate stron-
ger coevolution, on average, than those that are regulated by
different transcription factors. Among our 1,377 interacting
pairs, we found 59 that were coregulated (both genes being
bound by one transcription factor with a confidence of P �
0.001). Surprisingly, these 59 had a median CAI correlation
coefficient of 0.111, significantly lower than that of the rest of the
interacting pairs (KS test, P � 0.047). Although we expect that
we have missed many interacting pairs that are regulated by the
same transcription factor (due to both false negatives in the
binding data and our lack of binding data for all transcription
factors), this shortcoming should only serve to weaken any bias
we find. Our finding that interacting pairs regulated by the same
transcription factor actually have weaker coevolution than others
supports our interpretation of the correlations as evidence of
coevolution by sequential mutations; however, we note that this
analysis does not address whether those sequential mutations
occurred in cis or in trans. We do not have an explanation for why
interacting proteins whose genes are regulated by the same
transcription factor indicate less expression coevolution than
other interacting proteins.

Prediction of Protein Interactions. Considering that we have two
metrics that are both indicative of physical interaction between

proteins, we asked whether protein pairs with coevolving ex-
pression levels are more likely to indicate detectable protein
sequence coevolution or whether instead the two metrics are
largely independent. We found the latter to be the case, because
the correlation between our two metrics of coevolution was
extremely weak (Pearson r � 0.016). Because the metrics are
independent, it is possible that they could be combined to yield
more information than either in isolation.

To test the power of combining the two metrics, we generated
predictions of previously uncharacterized protein interactions.
We started with the list of random protein pairs that satisfied the
variance cutoffs used above for both evolutionary rates and CAI
(1,711 total pairs), and we applied cutoffs for both correlation
coefficients. We began with the arbitrary cutoffs of r � 0.75 for
protein sequence coevolution and r � 0.9 for CAI coevolution,
which yielded a list of 21 predictions (Table 1) involving proteins
of both high and low CAI (ranging from 0.197 to 0.85 in S.
cerevisiae). Of these 21 pairs, four were interactions from our list
of 1,377, which is 27-fold higher than expected by chance and is
thus unlikely to occur randomly (P � 3 � 10�5). This enrichment
can be interpreted as the approximate enrichment for interacting
proteins for all pairs in the list that are not known to interact. In
other words, each pair in Table 1 (aside from known interactors)
is �27-fold more likely to interact than a random pair of yeast
proteins. More or less stringent cutoffs also can be used to
generate either more predictions with less confidence or fewer
predictions with greater confidence. For example, use of a more
stringent cutoff (evolutionary rate r � 0.9, CAI r � 0.95) on these
same 1,711 pairs resulted in a list of 10 predictions (Table 1, first
10 rows), of which three were from our list of known interactions
(42-fold enrichment, P � 4 � 10�5). These enrichments are
stronger than those resulting from the application of either
metric alone (data not shown), confirming our expectation that
combining the two increases their power. Although we could
undoubtedly have improved these enrichments for known inter-
acting pairs by testing many different cutoffs to finely tune them,
one must be careful not to overfit the data or to perform multiple
tests without the appropriate statistical corrections; thus, we
have chosen not to do this fine tuning.

It should be noted that several genes appear multiple times in
the list of our predictions (Table 1), indicating that our method
may prove useful at predicting small networks of interacting

Fig. 2. Coevolution of expression. (A) A histogram of the base 10 logarithms of variance in CAI for all 192,510 possible pairs of the 621 proteins in this study.
The variance for each protein in a pair was calculated, and the lower of the two was used to represent the pair. The dashed line indicates the variance cutoff
described in the main text. (B) A histogram of the correlation coefficients indicating the strength of CAI coevolution for 200 pairs of interacting proteins (solid
line) and 11,581 pairs of noninteracting proteins (dashed line). The two distributions are significantly different from one another (KS test, P � 10�26). Bin labels
are the upper bound for each bin (e.g., the label 0.9 indicates 0.8 � r � 0.9).
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proteins. For example, our method predicted a fully connected
network of four proteins (Nog1p, Rlp24p, Fur1p, and Nop7p),
with all six interactions of that network among our top 10
predictions. Two of these interactions, namely Nog1p with
Nop7p and Rlp24p, were previously known. Other predictions in
this group, such as the interaction between Nop7p and Rlp24p,
are quite plausible because they both interact with Nog1p and
such clustering of interactions within small groups of proteins is
common (24). Other proteins are also predicted to interact with
at least one member of this group; for instance, Utp6p is
predicted to interact with Nop7p, a hypothesis that is quite
reasonable because both of these proteins are located in the
nucleolus (25, 26). Whereas alternative methods for computa-
tional prediction of protein interactions and functional linkages
have yielded more predictions than our method, we note that
they have all used far more genome sequences as well (e.g., 57
genomes were used by Date and Marcotte in ref. 27). Thus,
although we present very few predictions in this study, we
anticipate that applying this method to more genomes will
greatly enhance its power.

Discussion
We have shown that the expression levels of genes encoding
interacting proteins tend to coevolve in yeast. This coevolution
is of a nature fundamentally different from the only other type
of coevolution that has thus far been studied in interacting
proteins, namely the coevolution of amino acid sequence, and it
may represent a widespread and important mode of evolutionary
change. Both types of coevolution can be detected in scores of
genes by using a large set of protein interactions in yeast,
although �3-fold more interacting pairs showed detectable
coevolution of expression than of protein sequence in this study.

What is perhaps most surprising is the extent of coevolution
we were able to detect using only four genome sequences. We did
not use partial genome sequences that are available for many
more yeast species (28, 29), because including them dramatically
reduced the number of genes for which alignments of ortholo-

gous genes in all species were available. However, because many
more yeast species will soon have complete genome sequences
available, we expect that the power of the tests introduced here
will increase greatly. Furthermore, our use of four genome
sequences provides a reasonable benchmark for future studies in
other eukaryotes such as Drosophila melanogaster, Caenorhab-
ditis elegans, and others because close relatives of these species
(Drosophila pseudoobscura and Caenorhabditis briggsae) already
have been fully sequenced and several close relatives soon will
have sequenced genomes. Our method may not be as easily
applicable in species with very little codon bias determined by
gene expression levels, such as humans.

Aside from being useful for studying the evolution of gene
regulation, our finding of expression coevolution has a practical
application in predicting pairs of interacting proteins. Because
these predictions are more accurate when the expression coevo-
lution metric is combined with another method of interaction
prediction based on amino acid sequence coevolution, we sug-
gest that future studies in which protein interactions are pre-
dicted from genome sequences will be more comprehensive if
expression coevolution is included. Because even our combined
metric cannot detect most protein interactions when only four
genome sequences are used, we have not yet attempted to make
large-scale predictions of interacting proteins in yeast.

In addition to the metric of expression coevolution that we
introduce here, several other purely sequence-based methods for
predicting protein interactions exist, such as phylogenetic pro-
filing (30), conservation of gene neighborhood (31), and gene
fusions (32, 33). Because these methods are mostly independent,
combining them might greatly increase the power to predict
protein interactions based on genome sequences alone. The
methods could be integrated in a Bayesian framework (34); for
example, the extent of expression coevolution could serve as a
prior probability of interaction, which can then be increased or
decreased based on any other metric for interaction prediction.
We note, however, that these other methods of protein interac-
tion prediction would not have added any information in this
study. Phylogenetic profiling depends on the absence of some
genes from some genomes, but all genes we used were present
in all four genomes; conservation of gene neighborhood requires
shuffling of genes, but all genes we used had conserved synteny
in the four genomes; and the method of gene fusions depends on
relatively rare fusion events, which none of our genes have
undergone in these four species.

Another unexplored application of both sequence and expres-
sion coevolution metrics is assessment of the quality of high-
throughput protein-interaction data sets (e.g., ref. 20). One
could use the degree of expression and sequence coevolution in
a set of putative protein interactions to determine the accuracy
of the data using a set of well established interactions to
determine a baseline of the maximum amount of coevolution
expected if all interactions in a list were correct.

It is interesting to speculate about the future direction of work
investigating expression coevolution. Current research into the
cis-regulatory gene expression ‘‘code’’ of yeast, Drosophila, and
other organisms may soon make it possible to predict the
approximate expression patterns of genes in different conditions
on a genome-wide scale (35). If such prediction becomes pos-
sible, it will greatly increase the power to detect expression
coevolution from sequence alone: Instead of a single number
(mean gene expression level, estimated by codon bias), one could
calculate a vector representing the expression over many con-
ditions for each gene in each organism. With this more detailed
picture of gene expression regulation across different species,
expression coevolution could be studied in far greater detail.

Finally, it is possible that coevolution of both protein
sequences and expression levels may also be a property of pairs
or groups of genes that do not necessarily interact physically.

Table 1. Predictions of protein interactions

ORF 1 ORF 2
Known

interaction? CAI r Evol rate r

FUR1 NOP7 No 1.000 0.999
RLP24 NOP7 No 0.962 0.995
RLP24 FUR1 No 0.953 0.991
MRPL33 RIB3 No 0.986 0.944
PNO1 TIF35 No 0.995 0.927
NOG1 RLP24 Yes 0.998 0.920
SWP1 ATP3 No 0.980 0.933
NOG1 FUR1 No 0.951 0.948
NOG1 NOP7 Yes 0.960 0.936
TIF2 YBR025C Yes 0.967 0.903
TAF17 QCR7 No 0.903 0.969
VMA13 MLC1 No 0.904 0.959
TIF2 RPL9A No 0.988 0.851
WBP1 YPT10 No 0.953 0.844
RPL9A YBR025C No 0.945 0.829
NOP7 UTP6 No 0.953 0.813
FUR1 UTP6 No 0.962 0.803
RPL5 YBR025C No 0.901 0.828
RPP0 TIF2 No 0.954 0.761
RPL5 RPP0 Yes 0.936 0.750
NOB1 APT1 No 0.912 0.765

A list of 21 protein-interaction predictions made by combining the se-
quence and expression coevolution metrics. The first 10 pairs satisfy the
stringent cutoffs of evolutionary rate r � 0.9, CAI r � 0.95; all 21 satisfy the
cutoffs of evolutionary rate r � 0.75, CAI r � 0.9.
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Larger groups, or modules, of genes that work together to
produce some output or trait (e.g., a single metabolic pathway)
may show coordinated changes in expression levels and�or
evolutionary rates because of increased or decreased utiliza-
tion of those genes over evolutionary time. For example, if the
genes specifically responsible for galactose transport and
metabolism in yeast (the GAL genes) were used frequently in
one species but seldom or never in another related yeast, we
would expect to see an increase in the average expression (and
thus codon bias) of those genes in the species that metabolized
galactose more often. Changes in evolutionary rates also might
be seen because the species that seldom use galactose for
energy would have little selective pressure to maintain the

amino acid sequences of those genes; they would drift more
than their orthologous counterparts in the other species, and
this lineage-specific drift may be ref lected as coevolution of
amino acid sequences. Such coevolution at the levels of both
expression and sequence evolution may allow inference of
functional relationships between groups of genes that do not
necessarily physically interact; this evolutionary approach to
prediction of genetic relationships and functions may prove to
be quite useful as the amount of genome sequence data
continues to increase.
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